Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

trans-[1,3-Bis(2,4-dimethylphenyl)-imidazolidin-2-ylidene]dichloro(tri-phenylphosphine- κ P) palladium(II)

Aytaç Gürhan Gökçe, ${ }^{\text {a }}$ Hayati Türkmen, ${ }^{\text {b }}$ Muhittin Aygün, ${ }^{\text {a* }}$ Bekir Çetinkaya ${ }^{\text {b }}$ and Canan Kazak ${ }^{\text {c }}$
a Dokuz Eylül University, Department of Physics, Tınaztepe 35160, Buca-Izmir, Turkey, ${ }^{\text {b }}$ Ege University, Department of Chemistry, Bornova-Izmir 35100, Turkey, and ' 'Ondokuz Mayıs University, Department of Physics, Kurupelit-Samsun 55139, Turkey
Correspondence e-mail: muhittin.aygun@deu.edu.tr

Received 12 February 2004
Accepted 8 April 2004
Online 22 May 2004

The title complex, $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, shows slightly distorted square-planar coordination of the palladium(II) metal center. The $\mathrm{Pd}-\mathrm{C}$ bond distance between the N-heterocyclic ligand and the metal atom is 2.008 (3) \AA. The dihedral angle between the two dimethylphenyl ring planes is 33.17 (13) ${ }^{\circ}$.

Comment

Recently, increasing attention has been focused on using imidazole-based N-heterocyclic carbene (NHC) compounds as ancillary ligands for a number of transition-metal-mediated catalytic reactions (Bourissou et al., 2000; Perry \& Burgess, 2003; Herrmann, 2002). The donating properties of these ligands are superior to those of the most basic phosphanes. The ability of NHCs to coordinate metal centers makes them excellent candidates for the design of well defined catalysts. Increasing knowledge of the chemical properties of ligands and derived complexes has led to a growing demand for systems with more and more complex structures. In view of the growing importance of palladium complexes as $\mathrm{C}-\mathrm{C}$ and C-heteroatom catalysts (Culkin \& Hartwig, 2003), we have synthesized and structurally characterized the title compound, (IV).

A trans coordination of the carbene group and one phosphine group to the palladium(II) center is found in the crystal structure of (IV), as shown in Fig. 1. The coordination of the ligands is not exactly planar, the deviations of ligating atoms $\mathrm{Cl} 1, \mathrm{Cl} 2, \mathrm{P} 1$ and C 1 from the plane through these atoms and the Pd atom being -0.054 (1), -0.057 (1), 0.052 (1) and 0.064 (1) \AA, respectively. The $\mathrm{Pd} 1 / \mathrm{Cl} 1 / \mathrm{Cl} 2 / \mathrm{P} 1 / \mathrm{C} 1$ coordination plane that is formed by the slightly distorted square-planar coordination of the palladium(II) metal center is approximately perpendicular to the plane of the carbene ring
[89.35 (12) ${ }^{\circ}$], as reported for similar N -heterocyclic carbene complexes (Herrmann et al., 1997, 2001). The bond angles at the Pd atom involving trans pairs of substituents deviate from

the expected value of 180°, being $176.23(11)^{\circ}$ for the $\mathrm{C} 1-$ $\mathrm{Pd} 1-\mathrm{P} 1$ angle and $175.94(4)^{\circ}$ for the $\mathrm{Cl} 1-\mathrm{Pd}-\mathrm{Cl} 2$ angle. The bonding within the NHC ring indicates a pattern of delocalization that extends from atom N 1 to atom N 2 through atom C 1 , the $\mathrm{N} 1-\mathrm{C} 1[1.326$ (5) \AA] and $\mathrm{N} 2-\mathrm{C} 1[1.334$ (4) \AA] distances being significantly shorter than the $\mathrm{N} 2-\mathrm{C} 2$ [1.473 (5) \AA] and $\mathrm{N} 1-\mathrm{C} 3$ [1.479 (4) \AA] distances, in accordance with a previous study (McGuinness et al., 1998). The $\mathrm{Cl} 2-\mathrm{Pd} 1-\mathrm{P} 1$ and $\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{P} 1$ bond angles are 93.57 (4) and $89.69(3)^{\circ}$, respectively. The compression of the bond angles may be attributed to steric interaction between the Cl atoms and the aromatic rings. There is a significant difference between the two $\mathrm{Pd}-\mathrm{Cl}$ bond lengths in the title complex

Figure 1
A view of the title compound, (IV), showing the labeling of the non-H atoms. Displacement ellipsoids are shown at the 30% probability level and H atoms have been omitted for clarity.
$[\mathrm{Pd} 1-\mathrm{Cl} 2=2.2847(10) \AA$ and $\mathrm{Pd} 1-\mathrm{Cl} 1=2.3242(9) \AA]$, probably because of the presence of intramolecular C $\mathrm{H} \cdots \mathrm{Cl}$ interactions. There are two intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions with the following dimensions: $\mathrm{C} 12 \cdots \mathrm{Cl} 1=$ $3.538(3) \AA, \mathrm{H} 12 \cdots \mathrm{Cl} 1=2.81 \AA$ and $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cl} 1=136^{\circ}$; $\mathrm{C} 42 \cdots \mathrm{Cl} 1=3.563(5) \AA, \mathrm{H} 42 \cdots \mathrm{Cl} 1=2.83 \AA$ and $\mathrm{C} 42-$ $\mathrm{H} 42 \cdots \mathrm{Cl} 1=136^{\circ}$.

The C1-Pd1 bond distance between the NHC ligand and the metal atom is 2.008 (3) \AA, comparable to that in other palladium(II)-NHC complexes (Liu et al., 2003; Magill et al., 2001). The $\mathrm{Pd}-\mathrm{P}$ bond distance $[2.3318$ (9) \AA] is also similar to those reported previously (Aupers et al., 2000; McCrindle et al., 2000). The dihedral angle between the two dimethylphenyl ring planes is $33.17(13)^{\circ}$. Selected geometric parameters are given in Table 1.

Experimental

A 50 ml Schlenk tube was charged with (III) $(0.198 \mathrm{~g}, 0.5 \mathrm{mmol})$, $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)\right]_{2}(0.219 \mathrm{~g}, 0.25 \mathrm{mmol})$ and toluene $(5 \mathrm{ml})$. The mixture was heated under reflux for 4 h , after which the solution was cooled to room temperature and hexane (10 ml) was added. The resulting orange precipitate was filtered off and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ $\mathrm{Et}_{2} \mathrm{O}$ (yield $0.122 \mathrm{~g}, 65 \%$; m.p. 546 K). Calculated for $\mathrm{C}_{37} \mathrm{H}_{38^{-}}$ $\mathrm{Cl}_{2} \mathrm{~N}_{2}$ PPd: C 61.81, H 5.33, N 3.90\%; found: C 61.37, H 4.53, N $4.67 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.88(d, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.31-7.15 ($m, 19 \mathrm{H}, \mathrm{Ar}, \mathrm{PPh}_{3}$), $4.09\left(s, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.46,2.44$ $\left(12 \mathrm{H}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.87\left(d,{ }^{2} J_{\mathrm{C}-\mathrm{P}}=\right.$ $180.8 \mathrm{~Hz}, \mathrm{CPd}), 137.58,136.44,135.30\left(\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{9}\right), 134.41\left(d, J_{\mathrm{C}-\mathrm{P}}=\right.$ $\left.11.30 \mathrm{~Hz}, o-\mathrm{PC}_{6} \mathrm{H}_{5}\right), 131.34,129.99,129.47,126.63\left(\mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{11}\right.$, $\left.p-\mathrm{PC}_{6} \mathrm{H}_{5}\right), 129.80\left(d, J_{\mathrm{C}-\mathrm{P}}=42.4 \mathrm{~Hz}\right.$, ipso-C, $\left.\mathrm{PC}_{6} \mathrm{H}_{5}\right), 127.24(d$, $\left.J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}, m-\mathrm{C}, \mathrm{PC}_{6} \mathrm{H}_{5}\right), 51.95\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 20.84,18.04$ $\left(o-\mathrm{CH}_{3}, p-\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}\{\mathrm{H}\}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.46$.

Crystal data

$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$
$M_{r}=717.96$
Monoclinic, $P 2_{1 /} / n$
$a=13.9423$ (6) \AA
$b=14.7120(8) \AA$
$c=17.2894$ (7) \AA
$\beta=105.446(3)^{\circ}$
$V=3418.3(3) \AA^{3}$
$Z=4$

$$
D_{x}=1.395 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 26499 reflections
$\theta=1.9-29.2^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, yellow
$0.40 \times 0.21 \times 0.09 \mathrm{~mm}$
Data collection
Stoe IPDS-II diffractometer ω scans
Absorption correction: by integra-

tion (X-RED32; Stoe \& Cie,

2002)

$T_{\text {min }}=0.823, T_{\text {max }}=0.933$
34434 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.081$
$S=0.83$
9467 reflections
392 parameters

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

P1-C31	$1.813(4)$	$\mathrm{C} 28-\mathrm{C} 22$	$1.512(6)$
$\mathrm{P} 1-\mathrm{C} 41$	$1.822(4)$	$\mathrm{C} 16-\mathrm{C} 18$	$1.501(5)$
$\mathrm{P} 1-\mathrm{C} 51$	$1.830(4)$	$\mathrm{C} 14-\mathrm{C} 17$	$1.514(5)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.428(4)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.508(6)$
$\mathrm{N} 2-\mathrm{C} 21$	$1.437(5)$	$\mathrm{C} 24-\mathrm{C} 27$	$1.505(6)$
C1-Pd1-C12	$84.80(10)$	$\mathrm{C} 41-\mathrm{P} 1-\mathrm{Pd} 1$	$112.50(12)$
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 11$	$92.09(10)$	$\mathrm{C} 51-\mathrm{P} 1-\mathrm{Pd} 1$	$117.39(12)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 41$	$108.08(18)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$108.9(3)$
$\mathrm{C} 31-\mathrm{P} 1-\mathrm{C} 51$	$103.16(16)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Pd} 1$	$128.0(3)$
$\mathrm{C} 41-\mathrm{P} 1-\mathrm{C} 51$	$103.09(17)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{Pd} 1$	$122.9(3)$
$\mathrm{C} 31-\mathrm{P} 1-\mathrm{Pd} 1$	$111.71(13)$		

H atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ for aromatic H atoms, $0.96 \AA$ for methyl H atoms and $0.97 \AA$ for methylene H atoms.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED 32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F. 279 of the University Research Fund).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1470). Services for accessing these data are described at the back of the journal.

References

Aupers, J. H., Ferguson, G., Glidewell, C., Low, J. N. \& Wardell, J. L. (2000). Acta Cryst. C56, 945-947.
Bourissou, D., Guerret, O., Gabbai, F. P. \& Bertrant, G. (2000). Chem. Rev. 100, 39-92.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Culkin, D. A. \& Hartwig, J. F. (2003). Acc. Chem. Res. 36, 234-245.
Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.
Herrmann, W. A., Böhm, V. P. W., Gstöttmayr, C. W. K., Grosche, M., Reisinger, C.-P. \& Weskamp, T. (2001). J. Organomet. Chem. 617-618, 616628.

Herrmann, W. A., Gooben, L. J. \& Spiegler, M. (1997). J. Organomet. Chem. 547, 357-366.
Liu, Q.-X., Song, H.-B., Xu, F.-B., Li, Q.-S., Zeng, X.-S., Leng, X.-B. \& Zhang, Z.-Z. (2003). Polyhedron, 22, 1515-1521.

McCrindle, R., McAlees, A. J., Zang, E. \& Ferguson, G. (2000). Acta Cryst. C56, e132-e133.
McGuinness, D. S., Green, M. J., Cavell, K. J., Skelton, B. W. \& White, A. H. (1998). J. Organomet. Chem. 565, 165-178.

Magill, A. M., McGuinness, D. S., Cavell, K. J., Britovsek, G. J. P., Gibson, V. C., White, A. J. P., Williams, D. J., White, A. H. \& Skelton, B. W. (2001). J. Organomet. Chem. 617-618, 546-560.
Perry, M. C. \& Burgess, K. (2003). Tetrahedron: Asymmetry, 14, 951-961.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

